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I.  Introduction 

An objective review of program optimization technology 

has revealed a number of problems whose solutions are both 

essential (if new methods of organizing program development 

are to be successful) and relatively accessible today. 

(a) Structured programming techniques emphasize modular 

program construction and well-defined layers of 

representation in order to minimize the cost of 

producing correct, reliable software. Often, however, 

the structure introduced for clarity inhibits direct 

translation of an abstract algorithm to an efficient 

machine language form. The trend toward structured 

programming increases the need for tools to merge 

isolated modules and to eliminate inefficient layers of 

structure in a cost effective way. If efficiency 

remains the price for clarity and maintainability, the 

new disciplines will not be fully accepted. 

(b) Development of programs by stepwise refinement should be 

synonymous with program optimization. Program 

improvement aids should not be limited to the 

translation of source to machine code; they should be 

employed at each step from an abstract level of 

representation to a more concrete level. 



(c) Optimizers are too often expensive, weakly governable 

engines whose workings are not easily grasped by users 

and whose effects are only indirectly observable through 

changes in the runtime behavior of compiled programs. 

While it should not be necessary to understand a tool in 

order to use it, the tool should nevertheless be 

precisely controllable and readily adaptable to 

accomplish special tasks. Its effects should be 

expressed in terms the programmer can appreciate, 

preferably a modified or augmented copy of his program. 

Where the user must take control of operator definitions 

and data representations at the hardware level, he 

should be able to do so without completely suspending 

optimization. 

(d) It is now time for the results of research in the field 

of verification and automatic programming to begin 

affecting the design of practical tools. Current 

optimizers make too little use of knowledge deducible 

from programs or from measurements of their behavior, 

and are inflexible about accepting help in the form of 

assertions about the programs or their data. Too often 

the lack of a complete or efficient algorithm for a 

particular problem has inhibited the use of sound 

heuristics in critical regions. 



Our approach to the preceding problems has been 

two-fold. In the context of the ECL programming system, we 

have examined (1) general techniques for program 

optimization, including the efficient representation of 

knowledge about programs and the use of measurements to 

guide analysis, and (2) particular code optimization 

strategies to enhance the use of EL1 as an implementation 

language. 

The general optimization techniques we have studied are 

now being applied in two settings. 

(a) An interactive program transformation facility called 

the Structured Programming Laboratory (SPL) is now being 

designed. The SPL will address the issues of 

optimization at high levels of language, precise control 

of tools and visibility of their results, and the use of 

manifest, measured, and user provided knowledge about 

programs to assist their optimization. 

(b) An optimization phase is being added to ECL's 

interpreter-compatible compiler. Although designed to 

operate under strict resource constraints, and required 

to be consistent with the full power of ECL's data 

structure and control definition facilities, the 

optimizer we have developed incorporates some 

interesting techniques for detecting  and  removing  the 



sorts of redundancy that arise most frequently. 

To experiment with the use of EL1 as an implementation 

language, a compiler for a systems programming dialect 

(SPECL) is being constructed. The SPECL project complements 

work on the SPL, since it is concerned primarily with 

optimizations at the machine level: reordering computations 

to minimize temporary storage, register allocation and 

assignment, and the like. 

Section II of this report gives an overview of how 

optimization at the source level will be performed using the 

SPL. Sections III and IV discuss aspects of the 

representation of facts about programs and the use of 

measurements to aid code improvement. Section V describes 

the new optimization phase of the compatible compiler, and 

Section VI discusses the SPECL compiler. 

II.  Optimization in the Structured Programming Laboratory 

There seems to be a "critical mass" phenomenon in 

program optimization: the practicality of a single tool is 

greatly enhanced by the existence of others. Such classical 

loop optimizations as strength reduction and test 

replacement, for example, may give rise to "dead" variable 

assignments that must be removed. Open-substitution of 

procedures, i.e.  the  replacement  of  procedure  calls  by 



equivalent expressions derived from the procedure bodies, 

leads to opportunities for redundancy elimination. In 

short, the whole often seems more effective than the sum of 

the separate parts. Our studies of program specialization 

and measurement-assisted compilation have repeatedly 

indicated that to forge new tools one must rely on an 

arsenal of existing techniques. 

Thus, a principal aim of our recent work has been the 

design of the Structured Programming Laboratory, a system 

based on ECL that will both incorporate the best of our 

existing program development and manipulation tools and 

serve as the setting for future work on program improvement. 

To its users, the SPL will act like a program editor 

with special facilities to help manage the ebb and flow of 

program development from abstract specification to concrete 

realizaton. As successive refinements take shape, they will 

be recorded in a development history. The history will 

exhibit the global structure of developing systems and 

display the logical connection among decisions made during 

design. The explicit retention of this structure not only 

aids understanding and maintenance of the program, but can 

be used to support optimization during refinement as well. 

Suppose a program to manipulate sets makes use of a 

special syntactic structure to iterate over the elements of 

a set.  An example might be 



FORNEACH E IN SUCCESSORS(H) DO 
F(E) -> 

S <- S UNION {E} 

This iterator might be implemented by a rewriting rule or 

"syntax macro" such as 

FORNEACH E IN  $S  DO  $B  —> . 
BEGIN 

DECL TEMP:SET BYVAL  $S; 
REPEAT 

EMPTY(TEMP) => EXIT; 
DECL E:ELEMENT LIKE NEXT(TEMP); 
$(B) 

END; 
END; 

In a conventional system each call of this macro would  be 

expanded,  and  the  set  primitives  EMPTY and NEXT perhaps 

further expanded before optimization could  begin.   In  the 

SPL,  it  will be possible first to study the improvement of 

the macro body in isolation.  For instance, storage for  the 

element E might better be allocated once outside the loop: 

DECL E:ELEMENT; 
REPEAT 

EMPTY(TEMP) => EXIT; 
E <- NEXT(TEMP); 
$(B); 

END 

Nor is it necessary that every  call  be expanded  in-line. 

The  optimizer might  generate  a subroutine from the macro 

body, taking a SET $S and a  parameterless  function  $B  as 

arguments.    Or   it  might  mix   the  open  and  closed 

implementations  depending  on  estimates  of  the  relative 

importance of the points of call. 



Although quite simple, this example shows the 

importance  of  not  throwing  away  useful  structural 

information only to try to recover it later  through 

extensive  global  analysis. Recognizing  and  merging 

instances of this  little  set mapping  routine,  using  an 

expand-then-optimize  strategy, might  become  an expensive 

task given sizable bindings for $B. 

We further feel that the approach of involving 

optimization at high language levels can lead to a kind of 

bootstrapping effect. Where extended operators (such as 

FORNEACH) are frequently used in programs written in high 

level terms (like the SET domain), it will be profitable to 

pre-analyze their definitions, singly or in typical 

combinations, to identify a priori the special conditions 

under which simplifications can be made. In the FORXEACH 

case, the loop body can be reordered if the argument SET $S 

is not initially EMPTY. If $S is completely known at the 

point of call, it may not be necessary to generate a loop at 

all. In short, it may be possible to extend the SPL's 

general optimization algorithms to special domains, and to 

minimize the cost of translating programs over those 

domains. 



III.  Knowledge About Programs - The Context Graph 

Useful manifest information is sometimes overlooked by 

conventional optimizers because its discovery requires 

deductive power beyond that of the analyzer or because 

maintaining sufficient facts about the dynamic execution 

states of a program appears too expensive. 

Consider the sequence 

1 < I AND I < LENGTH(A) -> [) ... A[I] ... (] 

Few compilers would take cognizance of the predicates 

involving I to eliminate range checking when the selection 

A[I] is compiled. Yet well-written, defensive programs 

often include just such checks on data, making the further 

checking required by language semantics redundant. There is 

a host of similar situations in which optimizers miss 

important semantic features because of the difficulty or 

expense of bookkeeping. 

The heart of the SPL will be a Symbolic Evaluator. 

Part of its job will be to manage program knowledge to make 

simplifications possible and efficient. While the design of 

the Evaluator is not yet fixed, we will describe a method we 

have developed by which context-dependent facts can be 

maintained with little or no storage duplication and only 

modest access overhead. 

Facts such as those about the value of I in the example 



above will be stored in a data base, accessible by hashing 

the names of items they describe. Each fact will be tagged 

with a context descriptor. We use the term context to 

denote a program region in which control is strictly 

sequential. A context graph is a labeled, acyclic, directed 

graph whose nodes represent the,contexts (flow blocks) of 

the program. The context labels are integers assigned in 

evaluation order: if node Ni can precede node Nj during some 

computation (ignoring loop traversal), then LABEL(Ni) < 

LABEL(Nj). The arcs in a context graph are of two kinds: 

possible predecessor (PP) arcs and essential predecessor 

(EP) arcs. Each node N except the unique entry node has one 

EP arc pointing to its immediate flow dominator, the nearest 

context through which control must always pass to reach N. 

Each node has a set of PP arcs pointing to the contexts that 

may immediately precede it in some computation. 

To show how the context discrimination works, we will 

give an algorithm for deriving the set of possible values 

for some variable V at a particular program point C, given 

the set of value-facts about V for the whole program. 

Let G be the context graph of the program with E its 

unique entry node. Define a marking of a context graph as 

an ordered subset of the nodes, in decreasing order of 

label. The set of contexts in which program variable V 

acquires new values will be given by a marking M of graph G. 



The problem is to derive a submarking S from M that 

satisfies two conditions with respect to the particular 

context of interest C: 

(1) each member of S can be  reached  via  PP  arcs  from  C 
without passing members of M, and 

(2) every PP path from  C  to  E  (the  unique  entry  node) 
contains at least one member of S. 

The members of S correspond to bindings of V that can  still 

be  in  effect  when  control  reaches  C  during  program 

execution. 

A simple scheme for computing S can be based on the 

connectivity matrix P defined by 

P[I, J] = the number of PP paths  in  G  from  the  node 
labeled I to that labeled J. 

P can  be  computed  (once,  in  advance)  using  Warshall's 

algorithm with arithmetic sum and product operations.  Or it 

can easily be developed "on the fly" as context  labels  are 

assigned during initial analysis. 

To see how S can be obtained efficiently using P, 

imagine an intermediate stage of the computation at which a 

partial marking S has been produced. That is, members of S 

(L in number) have been selected from M in decreasing label 

order, with those not satisfying condition (1) above 

rejected. The process is to continue until condition (2) is 

also satisfied. Suppose also that associated with the Kth 

member  of set S is an integer, NUMBER\CLEAH[K], which gives 
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the number of PP paths from C  to  the  entry  E  that  pass 

through S[K], but not through any S[J], for 1 <. J < K. 

The next member of S is found by examining successive 

candidates T from M until one is found having at least one 

clear PP path (i.e., unmarked by members of M) from C, or 

until M is exhausted. Note that any marked path from C to T 

must contain at least one S node, since any marker from M 

that could occlude T from C will already have been 

considered. So it suffices to count paths to T that are 

clear of S nodes. 

Let NUMBER\TO\T be P[LABEL(C), LABEL(T)], the total 

number of paths from C to T. Since the labels along every 

such path must decrease, the number of clear paths is 

FOR K TO L REPEAT 
NUMBER\TO\T <+ 
- P[LABEL(S[K]), LABEL(T)] * NUMBER\CLEAR[K] 

END 

where <+ is an operator that increments its left operand by 

its right, and the product computed on the Kth iteration 

represents the number of paths from C to T that begin with 

clear paths from C to S[K]. 

If there are clear paths to T, then T is inserted at 

the shallow end of S and NUMBER\CLEAR[L+1] is installed. 

Since T occludes some new paths from C to E, the entry of G, 

a  counter is decremented to determine whether every path to 

11 



E has been blocked.  If so, the program halts with S as  its 

result. 

The following ECL procedure computes the submarking of 

M that occludes node C, if one exists. It is assumed that 

each member of M has a lower label than LABEL(C) (i.e., 

potential values for V lying past C will be discarded 

outright), and that the connectivity matrix P has already 

been computed. 

EXPR(M:MARKING, C:NODE; MARKING) 
< MARKING, "C BLOCKED" > << 
BEGIN 
DECL NUMBER\CLEAR:SEQ(INT) SIZE CARDINALITY(M); 
DECL NUMBER\TO\E:INT BYVAL P[LABEL(C), LABEL(E)]; 
DECL NUMBER\TO\T:INT; 
DECL S:MARKING; 
DECL L:INT /* 'CARDINALITY OF S'; 
FORNEACH T IN M 
DO BEGIN 
NUMBER\TO\T <- P[LABEL(C), LABEL(T)]; 
NUMBER\TO\T = 0 => NOTHING    /* 'NO PATHS FROM C TO T'; 
FOR K TO L 
REPEAT 
NUMBER\TO\T <+ 
- (NUMBER\CLEAR[K] * P[LABEL(S[K]), LABEL(T)]); 

END; 
NUMBER\TO\T = 0 => NOTHING    /* 'T MARKS NO NEW PATHS FROM C; 
APPEND(S, T) /* 'INSERT T AT THE END OF S'; 
NUMBER\TO\E <+ 
- (NUMBER\TO\T * P[LABEL(T), LABEL(E)]); 

NUMBER\TO\E = 0 -> RETURN(S, "C,BLOCKED"); 
NUMBER\CLEAR[L <+ 1] <- NUMBER\TO\T; 

END; 
S * 

END; 

The algorithm can be  refined  by making  use  of  the 

essential  predecessor  information  in  the  context graph. 

12 



Obviously, C will be blocked as soon as one of its  flow 

dominator nodes  is blocked.  So for each trial node T we 

need only consider paths to T from  the  earliest essential 

predecessor of C whose label exceeds LABEL(T). 

The changes to the procedure are straightforward. C is 

bound BYVAL so that it can be rebound to the least 

back-dominator of the input C as each candidate T is chosen. 

(We assume that EP(E) points to a special node whose LABEL 

is less than any other.) A special check is made for the 

case in which T is one of C's essential predecessors. TAIL, 

a new local INT, will index the first element of S installed 

since C's last adjustment. Previously discovered S nodes 

cannot possibly block the new C; hence, they are disregarded 

by the summation over blocked paths from C. That loop 

becomes FOR K FROM TAIL TO L REPEAT ... . The full 

algorithm is 

13 



EXPR(M:MARKING, C:NODE BYVAL; MARKING) 
< MARKING, "C BLOCKED" > << 
BEGIN 
DECL NUMBER\CLEAR:SEQ(INT) SIZE CARDINALITY(M); 
DECL NUMBER\TO\E:INT BYVAL P[LABEL(C), LABEL(E)]; 
DECL NUMBER\TO\T:INT; 
DECL S:MARKING; 
DECL L:INT /* 'CARDINALITY OF S'; 
DECL TAIL:INT BYVAL 1 /* 'TAIL OF S FOR CURRENT C; 
FORNEACH T IN M 
DO BEGIN 
LABEL(EP(T)) GT LABEL(T) -> 
BEGIN 
REPEAT 
C <- EP(C); 
LABEL(EP(C)) LT LABEL(T) => NOTHING; 

END; 
C = T => 
[) APPEND(S, T); RETURN(S, "C BLOCKED") (]; 

TAIL <- L + 1 /* 'EARLIER S MEMBERS CANT HIDE C'; 
NUMBER\TO\E <- P[LABEL(C), LABEL(E)]; 

END; 
NUMBER\TO\T <- P[LABEL(C), LABEL(T)]; 
NUMBER\TO\T = 0 => NOTHING   /* 'NO PATHS FROM C TO T'; 
FOR K FROM TAIL TO L 
REPEAT 
NUMBER\TO\T <+ 
- (NUMBER\CLEAR[K] * P[LABEL(S[K]), LABEL(T)]); 

END; 
NUMBER\TO\T = 0 => NOTHING    /* 'T MARKS NO NEW PATHS FROM C; 
APPEND(S, T) /* 'INSERT T AT THE END OF S'; 
NUMBER\TO\E <+ 
- (NUMBER\TO\T * P[LABEL(T), LABEL(E)]); 

NUMBER\TO\E = 0 -> RETURN(S, "C BLOCKED"); 
NUMBER\CLEAR[L <+ 1] <- NUMBER\TO\T; 

END; 
S; 

END; 

The computed submarking S gives  the  set  of possible 

values  for  V  at C as accurately as can be determined from 

static analysis.  Note  that  the  speed  of  the  algorithm 

depends not on the size of the graph G, but only on the size 

of  the  initial  set  of  possibilities.   For  a   typical 

variable, this set is likely to be small. 

14 



IV.  Uses of Measurements in Optimization 

Execution profiles have been recognized for some years 

as helpful aids to the programmer. They guide his attention 

to the small but critical inner loops where programs 

typically spend most of their time. And profiles highlight 

sections of the program not being executed either because of 

bugs or because of inadequate test data. 

In the SPL, timing measurements and frequency counts 

taken from representative sample data will aid not only 

human users but will help drive refinement and optimization 

tools as well. Because metering probes are simply ECL data 

items, they can be included along with other program 

knowledge in the SPL data base. Because ECL permits them to 

be placed and activated with great selectivity, they can 

give a clearer picture of data attributes and program 

behavior than conventional profiles. 

Measurements act both as a guide to important program 

regions and as a rein on the analyzer. It can be permitted 

to expend most effort where the potential payoff is 

greatest. Comparison of frequency counts may lead to 

reordering of branches, when that can be done safely, and 

frequencies enable the decision whether to expand a macro or 

call a subroutine to be made selectively. 

The fact that a region is not  executed  at  all  under 
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certain conditions may suggest simplifications to be 

verified either by the Symbolic Evaluator or by asking the 

user. This may be especially fruitful when a very general 

procedure is being applied to a special case task. 

Consider, for example, this doubly recursive list structure 

copy routine: 

COPY = 
EXPR(A:LIST; LIST) 

BEGIN 
ATOMIC(A) => A; 
ALLOC(LISTCELL OF 

COPY(HEAD(A))     /* 1, 
COPY(TAIL(A))     /* 2); 

END 

Suppose that COPY is called in an iteration  whose  skeleton 

is 

REPEAT 
• • • 
L <- READLISTO; 
• • • 
COPY(L) /* 3; 
• • • 

END; 

In the SPL it will be possible to plant metering probes that 

discriminate among several points of call of a function. 

After being metered and invoked by its calling program on 

100 sample input lists, the COPY procedure, printed with its 

probes, might look like: 

EXPR(A:LIST; LIST) 
BEGIN 

<300, 300, 100> ATOMIC(A) => <300, 100, 0> A; 
<0, 200, 100> ALLOC(LISTCELL OF 

COPY(HEADU))        /* 1, 
COPY(TAILU))        /* 2); 

END 

16 



The elements of the frequency tuples <c1, c2, c3> correspond 

respectively to the labeled points at which COPY is called. 

The zero counts are interesting and can be used as cues by 

the Symbolic Evaluator. The fact that ATOMIC(A) is never 

FALSE when COPY is called from point 1 suggests that HEAD(A) 

is never a list; that is, that input lists will always be 

linear. If the user confirms this guess, then COPY can be 

significantly simplified: its first recursive call can be 

replaced by HEAD(A). The fact that ATOMIC(A) is never TRUE 

when the point of call is 3 suggests that input lists L are 

never empty. If this were also confirmed, it might be 

advantageous to avoid one test per call by replacing COPY(L) 

with ALLOC(LISTCELL OF HEAD(L), COPY(TAIL(L))). 

An important feature of the SPL will be an 

implementation library, a collection of packages oriented 

towards specific problem domains, each containing syntactic 

extensions, modes and mode gerators, debugging aids, and 

sets of alternative data representations and access 

algorithms. Use of preplanted metering probes by these 

packages should be a most effective way of providing machine 

assistance during implementation, since a package can be 

built to interpret its own probes intelligently. A sorting 

package, for example, can collect statistics during 

development and testing of a user's program and then give 

him quantitative advice on which strategy to select for the 

production version.  A  sparse matrix  package  can  gather 
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measurements not only on the patterns of sparseness of 

matrix elements but on the accessing sequences most commonly 

used. It can then offer the user an assessment of the 

space/time trade-offs involved in his particular 

application. 

V.  Optimization Phase in the ECL Compatible Compiler 

While the SPL will help its users eliminate or avoid 

major redundancy at the source level, it should not be 

forced to carry the process too far. A little redundancy 

often makes a program easier to read. Straightforward 

optimizations not requiring the full machinery of the SPL 

should properly be included in the machine code generator. 

We have therefore designed and are now coding an 

optimization pass for ECL's compatible compiler. Called 

Pass 1.5, it walks the program tree output by Pass 1 (the 

analysis phase) and produces a modified tree for input to 

Pass 2 (the code generation phase). To permit the compiler 

to remain usable within limited resources, we have chosen to 

concentrate on the problem of eliminating redundant 

subexpressions, and on the so-called "invalidation problem" 

for potentially available expressions. 

The invalidation problem arises because sharing 

patterns  among  variables and data structures permit hidden 
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side effects to destroy the availability of expressions not 

manifestly affected. For example, suppose X and Y are LIST 

variables, and consider the sequence 

...  HEAD(TAILU)) ... 
Y <- NEWLIST; 

...  HEAD(TAILU)) ... 

Unless it can be shown that Y is shared neither with  X  nor 

with TAIL(X), the value of HEAD(TAIL(X)) must be recomputed; 

that is, it is invalidated by the possible side effect.   In 

a language with the rich potential for sharing that ECL has, 

the relationship between X and  Y may  be  quite  obscure, 

particularly if they are formal parameters or free variables 

of the procedure being compiled.  This is  sometimes  called 

the "aliasing problem." 

Our approach in Pass 1.5 is to cope as effectively as 

we can with the invalidation problem without engaging in 

intense analysis. Fortunately, a significant number of 

potentially damaging side effects can be ruled out on very 

simple grounds of scope, storage status (heap versus stack) 

or data type. 

Two types of common subexpressions are distinguished: 

pure values and proper objects. Pure values are expressions 

like X + Y and LENGTH(A) whose values are transient; that 

is, they occupy no identifiable place in storage. The 

availability of a pure value for reuse ends if any of is 

subexpressions  is  redefined.   When this type of redundant 
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expression is removed, its replacement acts like a "runtime 

constant": storage for the value is allocated at procedure 

entry and is initialized when the "parent" or defining 

occurrence is evaluated. Thereafter it may be referenced 

but not changed. 

Proper object expressions are those with identifiable, 

reusable storage locations, such as A.FIELD[I] and VAL(P). 

When found redundant, they too are replaced by references to 

temporaries. But proper object temporaries behave like 

shared variables, rather than constants. For example, the 

sequence 

DECL A .-RECORD; 

PRINT(A.FIELD[I]) ; 

A.FIELD <- NEWFIELD; 
PRINT(A.FIELD[I]) ; 

would be replaced, in effect, by 

DECL A:RECORD; 

DECL T1:ANY SHARED A.FIELD; 
DECL T2:ANY SHARED T1[I]; 
PRINT(T2); 

• • • 
T1 <- NEWFIELD; 
PRINT(T2); 

Care must be taken to see that stack space for proper object 

temporaries  is  allocated  at  the  same block level as the 

parent object (RECORD A in the example above).  If  it  were 

allocated  at  the  procedure  level,  for example, dangling 

references could outlive an object allocated on  the  stack, 
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leading to confusion for the storage manager. 

As Pass 1.5 walks the program tree, it maintains an 

Available Expression List (AEL). Only simple expressions 

using built-in operators are included; control expressions 

are not. Each expression listed in the AEL is classified by 

mode, by context of creation, by expression type (pure or 

proper), and if proper, by scope and locale (local versus 

global, stack, heap or unknown). As a new simple expression 

is walked, it is tested for redundancy with existing 

available expressions.  Two expressions match when 

(1) they have the same operator, and 
(2) they have the same number of operands, and 
(3) each pair of corresponding operands match recursively. 

If the new expression matches none of the AEL members it is 

made available by adding it to the list. Otherwise it is 

linked to the existing expression subtree. 

Various transitions and events in Pass 1.5's walk of 

the tree cause it to scan the AEL and prune invalid 

elements. A change of context, for example, may cause some 

expressions to become "unavailable" while the validity of 

others is re-established. A control excursion, such as a 

call to a procedure whose effects are unknown, forces all 

available expressions to be dropped except those depending 

strictly on "hidden" local names. Pruning expressions at an 

assignment is essentially a pattern matching process, using 

the  object  descriptions stored with AEL members.  When the 
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object being assigned is well defined, e.g. an unshared 

local variable of known mode, affected expressions can be 

pruned quite precisely. In less well resolved cases of 

course, more AEL elements may have to be removed to 

guarantee correctness. For example, VAL(INTPTR) <- I + 1 

invalidates not only the expression being redefined but also 

all INT expressions not known to reside on the stack. 

Even so, it appears that the inexpensive classification 

scheme used in Pass 1.5 will provide a most satisfactory and 

efficient adjunct to the more powerful tools of the SPL. 

VI.  The SPECL Compiler 

The SPECL (Systems Programming in ECL) project is 

intended to extend the use of ECL into areas normally 

reserved for so-called "implementation languages." It is a 

dialect of ECL that can be compiled to stand-alone machine 

code that runs without the support of ECL's runtime 

facilities. It offers the opportunity to "contract" ECL for 

special applications, since SPECL-produced code can be 

augmented by just the runtime support (such as storage 

management or I/O) that's needed. 

SPECL also offers access to the implementation of 

operators and the choice of underlying data representations 

at the hardware level.  For example,  suppose  a  programmer 
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wants to implement doubly linked lists using a minimum of 

storage for the links. One trick is to give each element a 

single link field containing the bitwise exclusive-or of the 

address of its predecessor with that of its successor. 

Given pointers to any two successive elements it is then a 

simple matter to move forward or backward along the list. 

SPECL is ideal for such an application since it permits 

the user to manage storage as he chooses and allows him to 

give machine code definitions for the necessary pointer 

operations. Access to the hardware level is isolated in 

code generation templates called Compiler Control 

Expressions (CCE). CCE's tell the compiler how to implement 

a given operator, depending on the states of its operands. 

The descriptions of operand states serve as goals for the 

code generator as well as enabling code selection. The 

CCE's contain enough information about register use and side 

effects that optimization of expressions containing 

user-specified operators need not be interrupted. 

The compiler consists of three phases. The first 

labels the program tree with temporary storage requirements 

(for subtrees free of common subexpressions (CSE)) in a 

manner similar to the Sethi-Ullman method. Other properties 

that can be deduced at this time are brought out and 

attached to the tree. An initial pruning of the possible 

code generation templates takes place as well. 
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The second phase operates on a partially flattened 

version of the tree. It reorders computations to try to 

minimize the use of temporary storage. This step is 

necessary because the Sethi-Ullman algorithm does not allow 

for CSE's. The method is heuristic and incomplete because 

the minimization problem is polynomial complete. 

Register allocation and assignment are also performed 

during the second phase. Like minimization, the assignment 

problem is polynomial complete, and it will be handled 

heuristically. 

The third phase is straightforward code generation. 

Starting from a trial ordering of the expressions in 

each context (straight-line program section), the 

temporary-minimization procedure examines the variation in 

storage requirements over each context. The vicinities of 

peaks in the requirements are scanned for target positions 

that meet a simple numeric criterion based on the temporary 

usage and result size of the neighboring computations. 

Expressions are moved to these favorable positions in order 

to reduce overall storage use. CSE-free subtrees move as 

units, subject to safety contraints. Most of the time used 

by this process is actually spent in recalculating the 

temporary requirements after a move. 

The  register assignment  algorithm  first  makes  a 
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live-dead analysis of variables and common sub-expresseions 

and determines the minimum distance to next use for these 

items. This gives the information needed to perform 

register allocation optimally in straight-line code. 

Assignment is straightforward in such branch-free regions as 

well. With control structure, however, the problem is to 

match assignments at branches and join points. Heuristics 

are needed to reduce the computation from a "try all 

assignments" approach. At present, we have only a simple 

algorithm for this problem. As usual, the issue is the 

trade-off between the cost of the algorithm and the 

improvements in the code it makes. 

In summary, then, SPECL will extend to the hardware 

level the methodology that will characterize use of the SPL. 

Users will be permitted to become involved in the 

optimization of their programs, and they will not need to 

forsake good structure to achieve highly efficient 

performance. 
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